Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Sports Med ; 2024 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-38113921

RESUMO

This study aimed to assess the seasonal evolution of field-based and laboratory-based performance indicators in cyclists. Thirteen Junior male road cyclists (age 17.4±0.5 years) were followed up during a season, which was divided in three phases: early season (involving mainly training sessions), mid-season (including the first competitions), and late season (including the major competitions of the season). During each phase, field-based power output data were registered for the assessment of maximum mean power values, and laboratory-based endurance (ramp test and simulated 8-minute time trial), muscle strength/power (squat, lunge, hip thrust) and body composition indicators (dual-energy X-ray absorptiometry) were also assessed. A progressive (p<0.01) increase in maximum mean power values (e.g., 3.8±0.3 and 4.5±0.4 watts/kg in early and late season, respectively, for 60-minute efforts) and on 8-minute time trial performance (i.e., 5.3±0.3 and 5.6±0.4 watts/kg, respectively) was observed through the season. Yet, more "traditional" endurance indicators (i.e., ventilatory threshold, respiratory compensation point, or maximum oxygen uptake) seemed to show a ceiling effect beyond the mid-season. In addition, neither peak power output, body composition, nor muscle strength indicators followed a similar pattern to the aforementioned field-based indicators. In summary, in Junior cyclists field-based indicators seem more sensitive to monitor endurance cyclists' changes in actual fitness and performance capacity than more "traditional" laboratory-based markers in Junior cyclists.

2.
Sports (Basel) ; 11(11)2023 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-37999437

RESUMO

This study examined the force-velocity profile differences between men and women in three variations of row exercises. Twenty-eight participants (14 men and 14 women) underwent maximum dynamic strength assessments in the free prone bench row (PBR), bent-over barbell row (BBOR), and Smith machine bent-over row (SMBOR) in a randomized order. Subjects performed a progressive loading test from 30 to 100% of 1-RM (repetition maximum), and the mean propulsive velocity was measured in all attempts. Linear regression analyses were conducted to establish the relationships between the different measures of bar velocity and % 1-RM. The ANOVAs applied to the mean velocity achieved in each % 1-RM tested revealed significantly higher velocity values for loads < 65% 1-RM in SMBOR compared to BBOR (p < 0.05) and higher velocities for loads < 90% 1-RM in SMBOR compared to PBR (p < 0.05) for both sexes. Furthermore, men provided significantly higher velocity values than women (PBR 55-100% 1-RM; BBOR and SMBOR < 85% 1-RM; p < 0.05) and significant differences were found between exercises and sex for 30-40% 1-RM. These results confirm that men have higher velocities at different relative loads (i.e., % 1-RM) compared to women during upper-body rowing exercises.

3.
Biol Sport ; 40(4): 1169-1176, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37867760

RESUMO

Different laboratory-based variables are individually associated with cycling performance, but scarce evidence exists on which of them, when all assessed in combination, could best explain cycling performance. The present study aimed to examine the combined association between laboratory-based endurance, strength/power and body composition indicators with time trial performance in high-level cyclists. Ninety-four male cyclists were recruited (age: 20 ± 3.5 years, maximum oxygen uptake [V̇O2max]: 77.7 ± 5.4 ml · kg-1 · min-1). Participants performed a maximal incremental cycling test for the assessment of endurance indicators (peak power output [PPO], V̇O2max, ventilatory threshold [VT] and respiratory compensation point [RCP]), and an incremental loading test to assess muscle strength and power-related outcomes (1-repetition maximum, mean maximal power) in the squat, lunge and hip-thrust exercises. Body composition was assessed by dual energy X-ray absorptiometry. On a separate visit, participants performed a simulated 8-minute time trial to assess cycling performance (determined as the mean power output attained). Strong-to-very-strong correlations were found between all endurance indicators and time trial performance (most r-values ranging between 0.68-0.92), whereas weaker correlations were found for strength/power (r-values < 0.5) or body composition (r-values < 0.7) indicators. Multivariate regression analyses revealed that VT, RCP and PPO explained together 92% of the variance in time trial performance (p < 0.001), with no significant contribution of the remaining variables. Although different endurance, strength/power and body composition individually correlate with simulated time trial performance in high-level cyclists, the former (and particularly VT, RCP and PPO) show the strongest association when all studied in combination. These findings underscore the importance of endurance capabilities (above strength/power or body composition) for maximizing time trial performance.

4.
Artigo em Inglês | MEDLINE | ID: mdl-36981796

RESUMO

Injuries are common in team sports and can impact both team and individual performance. In particular, hamstring strain injuries are some of the most common injuries. Furthermore, hamstring injury ratios, in number of injuries and total absence days, have doubled in the last 21 seasons in professional soccer. Weakness in hip extensor strength has been identified as a risk factor in elite-level sprinters. In addition, strength imbalances of the hamstring muscle group seem to be a common cause of hamstring strain injuries. In this regard, velocity-based training has been proposed to analyze deficits in the force-velocity profile. Previous studies have shown differences between men and women, since there are biomechanical and neuromuscular differences in the lower limbs between sexes. Therefore, the aim of this study was to compare the load-velocity profile between males and females during two of the most important hip extension exercises: the hip thrust and the deadlift. Sixteen men and sixteen women were measured in an incremental loading test following standard procedures for the hip thrust and deadlift exercises. Pearson's correlation (r) was used to measure the strength of the correlation between movement velocity and load (%1RM). The differences in the load-velocity relationship between the men and the women were assessed using a 2 (sex) × 15 (load) repeated-measures ANOVA. The main findings revealed that: (I) the load-velocity relationship was always strong and linear in both exercises (R2 range: 0.88-0.94), (II) men showed higher velocities for light loads (30-50%1RM; effect size: 0.9-0.96) than women for the deadlift, but no significant differences were found for the hip thrust. Based on the results of this study, the load-velocity equations seem to be sex-specific. Therefore, we suggest that using sex-specific equations to analyze deficits in the force-velocity profile would be more effective to control intensity in the deadlift exercise.


Assuntos
Músculos Isquiossurais , Treinamento de Força , Masculino , Humanos , Feminino , Treinamento de Força/métodos , Levantamento de Peso/fisiologia , Exercício Físico , Terapia por Exercício , Força Muscular/fisiologia
5.
J Int Soc Sports Nutr ; 20(1): 2166366, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36686220

RESUMO

Background: The effects of pre-sleep protein supplementation on endurance athletes remain unclear, particularly whether its potential benefits are due to the timing of protein intake or solely to an increased total protein intake. We assessed the effects of pre-sleep protein supplementation in professional cyclists during a training camp accounting for the influence of protein timing. Methods: Twenty-four professional U23 cyclists (19 ± 1 years, peak oxygen uptake: 79.8 ± 4.9 ml/kg/min) participated in a six-day training camp. Participants were randomized to consume a protein supplement (40 g of casein) before sleep (n = 8) or in the afternoon (n = 8), or an isoenergetic placebo (40 g of carbohydrates) before sleep (n = 8). Indicators of fatigue/recovery (Hooper index, Recovery-Stress Questionnaire for Athletes, countermovement jump), body composition, and performance (1-, 5-, and 20-minute time trials, as well as the estimated critical power) were assessed as study outcomes. Results: The training camp resulted in a significant (p < 0.001) increase in training loads (e.g. training stress score of 659 ± 122 per week during the preceding month versus 1207 ± 122 during the training camp), which induced an increase in fatigue indicators (e.g. time effect for Hooper index p < 0.001) and a decrease in performance (e.g. time effect for critical power p = 0.002). Protein intake was very high in all the participants (>2.5 g/kg on average), with significantly higher levels found in the two protein supplement groups compared to the placebo group (p < 0.001). No significant between-group differences were found for any of the analyzed outcomes (all p > 0.05). Conclusions: Protein supplementation, whether administered before sleep or earlier in the day, exerts no beneficial effects during a short-term strenuous training period in professional cyclists, who naturally consume a high-protein diet.


Assuntos
Desempenho Atlético , Humanos , Suplementos Nutricionais , Carboidratos , Sono , Fadiga , Ciclismo
6.
Front Physiol ; 13: 945552, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35991188

RESUMO

Purpose: To compare endurance, strength and body composition indicators between cyclists of three different competition age categories. Methods: Fifty-one male road cyclists classified as either junior (n = 13, age 16.4 ± 0.5 years), under-23 [(U23), n = 24, 19.2 ± 1.3 years] or professional (n = 14, 26.1 ± 4.8 years) were studied. Endurance (assessed through a maximal incremental test and an 8-minute time-trial), strength/power (assessed through incremental loading tests for the squat, lunge and hip thrust exercises) and body composition (assessed through dual energy X-ray absorptiometry) were determined on three different testing sessions. Results: U23 and, particularly professional, cyclists attained significantly (p < 0.05) higher values than juniors for most of the analyzed endurance indicators [time-trial performance, maximum oxygen uptake (VO2max), peak power output (PPO), respiratory compensation point (RCP), and ventilatory threshold (VT)]. Significant differences (p < 0.05) between U23 and professionals were also found for time-trial performance, PPO and VT, but not for other markers such as VO2max or RCP. Professional cyclists also showed significantly (p < 0.05) lower relative fat mass and higher muscle mass levels than U23 and, particularly, juniors. No consistent differences between age categories were found for muscle strength/power indicators. Conclusion: Endurance (particularly time-trial performance, PPO and VT) and body composition (fat and muscle mass) appear as factors that best differentiate between cyclists of different age categories, whereas no consistent differences are found for muscle strength/power. These findings might help in performance prediction and/or talent identification and may aid in guiding coaches in the design of training programs focused on improving those variables that appear more determinant.

7.
Int J Sports Physiol Perform ; 17(3): 484-488, 2022 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-34969007

RESUMO

PURPOSE: Some power meters are available in both bilateral and unilateral versions. However, despite the popularity of the latter, their validity remains unknown. We aimed to analyze the validity of a unilateral pedal power meter for estimating actual ("bilateral") power output (PO). METHODS: Thirty-three male cyclists were assessed at different POs (steady cycling at 100-500 W, as well as all-out sprints), pedaling cadences (70, 85, and 100 repetitions·min-1), and cycling positions (seated and standing). The PO estimated by a left-only power meter (Favero Assioma Uno) was compared with the actual PO computed by a bilateral power meter (Favero Assioma Duo), and the level of bilateral asymmetry (most- vs least-powerful leg) with the latter system was also computed. RESULTS: Nonsignificant differences, high intraclass correlation coefficients (≥.90), and low coefficients of variation (consistently ≤5% except for low PO levels, ie, 5%-7% at 100 W) were found between Favero Assioma Uno and Favero Assioma Duo. However, although a strong intraclass correlation coefficient (.995) was found between both legs, asymmetry values of 4% to 6% were found for all conditions except when pedaling at the lowest PO (100 W), in which asymmetry increased up to 10% to 13%. CONCLUSIONS: Although cyclists tend to present some level of bilateral asymmetry during cycling (particularly at low PO), Favero Assioma Uno provides overall valid estimates of actual PO and is, therefore, an economical alternative to bilateral power meters. Caution is needed, however, when interpreting data at the individual level in cyclists with high levels of asymmetry.


Assuntos
Ciclismo , Ergometria , Teste de Esforço , Humanos , Perna (Membro) , Masculino , Postura Sentada , Posição Ortostática
8.
Front Physiol ; 12: 676484, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34177619

RESUMO

Purpose: To analyze the relationship between critical power (CP) and different lactate threshold (LT2) markers in cyclists. Methods: Seventeen male recreational cyclists [33 ± 5 years, peak power output (PO) = 4.5 ± 0.7 W/kg] were included in the study. The PO associated with four different fixed (onset of blood lactate accumulation) and individualized (Dmaxexp, Dmaxpol, and LTΔ1) LT2 markers was determined during a maximal incremental cycling test, and CP was calculated from three trials of 1-, 5-, and 20-min duration. The relationship and agreement between each LT2 marker and CP were then analyzed. Results: Strong correlations (r = 0.81-0.98 for all markers) and trivial-to-small non-significant differences (Hedges' g = 0.01-0.17, bias = 1-9 W, and p > 0.05) were found between all LT2 markers and CP with the exception of Dmaxexp, which showed the strongest correlation but was slightly higher than the CP (Hedges' g = 0.43, bias = 20 W, and p < 0.001). Wide limits of agreement (LoA) were, however, found for all LT2 markers compared with CP (from ±22 W for Dmaxexp to ±52 W for Dmaxpol), and unclear to most likely practically meaningful differences (PO differences between markers >1%, albeit <5%) were found between markers attending to magnitude-based inferences. Conclusion: LT2 markers show a strong association and overall trivial-to-small differences with CP. Nevertheless, given the wide LoA and the likelihood of potentially meaningful differences between these endurance-related markers, caution should be employed when using them interchangeably.

9.
Sensors (Basel) ; 21(7)2021 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-33805150

RESUMO

Cycling power meters enable monitoring external loads and performance changes. We aimed to determine the concurrent validity of the novel Favero Assioma Duo (FAD) pedal power meter compared with the crank-based SRM system (considered as gold standard). Thirty-three well-trained male cyclists were assessed at different power output (PO) levels (100-500 W and all-out 15-s sprints), pedaling cadences (75-100 rpm) and cycling positions (seating and standing) to compare the FAD device vs. SRM. No significant differences were found between devices for cadence nor for PO during all-out efforts (p > 0.05), although significant but small differences were found for efforts at lower PO values (p < 0.05 for 100-500 W, mean bias 3-8 W). A strong agreement was observed between both devices for mean cadence (ICC > 0.87) and PO values (ICC > 0.81) recorded in essentially all conditions and for peak cadence (ICC > 0.98) and peak PO (ICC > 0.99) during all-out efforts. The coefficient of variation for PO values was consistently lower than 3%. In conclusion, the FAD pedal-based power meter can be considered an overall valid system to record PO and cadence during cycling, although it might present a small bias compared with power meters placed on other locations such as SRM.

10.
Artigo em Inglês | MEDLINE | ID: mdl-33807931

RESUMO

The objective of this study was to describe the kinematic patterns and impacts in male and female skiers in the super-giant slalom, giant slalom and slalom disciplines of an international alpine skiing competition using a portable Global Navigation Satellite Systems (GNSS) technology device. Fifteen skiers (males, n = 9, females, n = 6) volunteered to participate in this study. Data acquisition was carried out using a wireless inertial measurement device (WIMUTM PRO: hybrid location system GNSS at 18 Hz with a precision locator UltraWideband UWD (<10 cm) and 3D accelerometers 1000 Hz) where distances covered in different speed and acceleration thresholds and impacts above 5g were recorded in each of the disciplines. Male and female alpine skiers showed different physical parameters and impacts even though they competed in the same courses in the disciplines of slalom, giant slalom and super-giant slalom (total impacts: p < 0.001; impacts > 7 g: p = 0.013; impacts 6.1-7 g: p = 0.002; impacts 5.1-6 g: p = 0.006). In male skiers, the distances traveled at different speed thresholds have a direct relation to the ranking of skiers, but this ideal threshold decreased as the technicality of the discipline increased. In the case of female skiers, although no relation was seen with the speed thresholds, greater distances covered at medium accelerations improved skiing performance. The external load in alpine skiing varied based on sex and discipline. This information could be essential to develop sex-specific and discipline-specific training programs in alpine skiing.


Assuntos
Esqui , Aceleração , Fenômenos Biomecânicos , Feminino , Masculino
11.
Front Physiol ; 12: 586113, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33716761

RESUMO

We assessed the effects of a short-term velocity-based resistance training (VBRT, where exercise intensity is individualized based on the loads and repetitions that maximize power output) program compared with traditional resistance training (TRT, where the same number of repetitions and relative load are used for every individual) on body composition, muscle strength/power, and endurance performance in competitive female cyclists. Seventeen participants were randomly assigned to 6 weeks (two sessions/week) of TRT (n = 8) or VBRT (n = 9), during which they maintained their usual endurance program. Both interventions included squat, hip thrust, and split squat exercises. Training loads were continuously registered, and outcomes were measures of muscle strength/power, body composition, and endurance performance (incremental test and 8-min time trial). No differences between TRT and VBRT groups were found for overall internal training loads during resistance training or cycling sessions (p > 0.05). Both interventions led to significant improvements in all strength/power-related outcomes, but VBRT induced greater improvements than TRT in maximum muscle strength and power as assessed with the hip thrust exercise (p < 0.05 for the group by time interaction effect). However, no significant group by time interaction effect was found for body composition or endurance performance-related outcomes. In conclusion, the addition of a short-term intervention of VBRT or TRT to the usual training regimen of competitive female cyclists improves muscle strength/power, albeit VBRT might induce superior gains on maximum strength/power for the hip thrust exercise.

12.
Int J Sports Physiol Perform ; 16(5): 674-681, 2021 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-33547263

RESUMO

PURPOSE: To compare the effectiveness of resistance power training (RPT, training with the individualized load and repetitions that maximize power output) and cycling power training (CPT, short sprint training) in professional cyclists. METHODS: The participants (20 [2] y, peak oxygen uptake 78.0 [4.4] mL·kg-1·min-1) were randomly assigned to perform CPT (n = 8) or RPT (n = 10) in addition to their usual training regime for 7 weeks (2 sessions/wk). The training loads were continuously registered using the session rating of perceived exertion. The outcomes included endurance performance (8-min time trial and incremental test), as well as measures of muscle strength/power (1-repetition maximum and mean maximum propulsive power on the squat, hip thrust, and lunge exercises) and body composition (assessed by dual-energy X-ray absorptiometry). RESULTS: No between-group differences were found for training loads or for any outcome (P > .05). Both interventions resulted in increased time-trial performance, as well as in improvements in other endurance-related outcomes (ie, ventilatory threshold, respiratory compensation point; P < .05). A significant or quasi-significant increase (P = .068 and .047 for CPT and RPT, respectively) in bone mineral content was observed after both interventions. A significant reduction in fat mass (P = .017), along with a trend (P = .059) toward a reduced body mass, was observed after RPT, but not CPT (P = .076 for the group × time interaction effect). Significant benefits (P < .05) were also observed for most strength-related outcomes after RPT, but not CPT. CONCLUSION: CPT and RPT are both effective strategies for the improvement of endurance performance and bone health in professional cyclists, although the latter tends to result in greater improvements in body composition and muscle strength/power.


Assuntos
Ciclismo , Treinamento de Força , Composição Corporal , Exercício Físico , Humanos , Força Muscular , Resistência Física
13.
Int J Sports Physiol Perform ; 16(4): 496-503, 2021 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-33401239

RESUMO

PURPOSE: To compare the effectiveness of optimum power load training (OPT, training with an individualized load and repetitions that maximize power output) and traditional resistance training (TRT, same number of repetitions and relative load for all individuals) in professional cyclists. METHODS: Participants (19 [1] y, peak oxygen uptake 75.5 [6] mL/kg/min) were randomly assigned to 8 weeks (2 sessions per week) of TRT (n = 11) or OPT (n = 9), during which they maintained their usual cycle training schedule. Training loads were continuously registered, and measures of muscle strength/power (1-repetition maximum and maximum mean propulsive power on the squat, hip thrust, and lunge exercises), body composition (assessed by dual-energy X-ray absorptiometry), and endurance performance (assessed on both an incremental test and an 8-min time trial) were collected before and at the end of the intervention. RESULTS: OPT resulted in a lower average intensity (percentage of 1-repetition maximum) during resistance training sessions for all exercises (P < .01), but no differences were found for overall training loads during resistance or cycling sessions (P > .05). Both programs led to significant improvements in all strength/power-related parameters, muscle mass (with no changes in total body mass but a decreased fat mass), and time-trial performance (all Ps < .05). A trend toward increased power output at the respiratory compensation point was also found (P = .056 and .066 for TRT and OPT, respectively). No between-groups differences were noted for any outcome (P > .05). CONCLUSION: The addition of either TRT or OPT to an endurance training regimen of elite cyclists results in similar improvements of body composition, muscle strength/power, and endurance performance.


Assuntos
Treino Aeróbico , Treinamento de Força , Exercício Físico , Teste de Esforço , Humanos , Força Muscular , Resistência Física
14.
Int J Sports Physiol Perform ; 15(7): 1047-1051, 2020 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-32604072

RESUMO

PURPOSE: The functional threshold power (FTP), which demarcates the transition from steady state to non-steady-state oxidative metabolism, is usually determined with a 20-minute cycling time trial that follows a standard ∼45-minute warm-up. This study aimed to determine if the standard warm-up inherent to FTP determination is actually necessary and how its modification or removal affects the relationship between FTP and the respiratory compensation point (RCP). METHODS: A total of 15 male cyclists (age 35 [9] y, maximum oxygen uptake 66.4 [6.8] mL·kg-1·min-1) participated in this randomized, crossover study. Participants performed a ramp test for determination of RCP and maximum oxygen uptake. During subsequent visits, they performed a 20-minute time trial preceded by the "standard" warm-up that is typically performed before an FTP test (S-WU), a 10-minute warm-up at the power output (PO) corresponding to 60% of maximum oxygen uptake (60%-WU), or no warm-up (No-WU). FTP was computed as 95% of the mean PO attained during the time trial. RESULTS: Although the FTP was correlated with the RCP independently of the warm-up (r = .89, .93, and .86 for No-WU, 60%-WU, and S-WU, respectively; all Ps < .001), the PO at RCP was higher than the FTP in all cases (bias ± 95% limits of agreement = 57 [24], 60 [23], and 57 [32] W for No-WU, 60%-WU, and S-WU, respectively; all Ps < .001 and effect size > 1.70). CONCLUSIONS: The FTP is highly correlated with the RCP but corresponds to a significantly lower PO, being these results independent of the warm-up performed (or even with no warm-up).

15.
Artigo em Inglês | MEDLINE | ID: mdl-32456306

RESUMO

The aim of this study was to determine the physiological variables that predict competition performance during a CrossFit competition. Fifteen male amateur CrossFit athletes (age, 35 ± 9 years; CrossFit experience, 40 ± 27 months) performed a series of laboratory-based tests (incremental load test for deep full squat and bench press; squat, countermovement and drop jump tests; and incremental running and Wingate tests) that were studied as potential predictors of CrossFit performance. Thereafter, they performed the five Workouts of the Day (WODs) corresponding to the CrossFit Games Open 2019, and we assessed the relationship between the laboratory-based markers and CrossFit performance with regression analyses. Overall CrossFit performance (i.e., final ranking considering the sum of all WODs, as assessed by number of repetitions, time spent in exercises or weight lifted) was significantly related to jump ability, mean and peak power output during the Wingate test, relative maximum strength for the deep full squat and the bench press, and maximum oxygen uptake (VO2max) and speed during the incremental test (all p < 0.05, r = 0.58-0.75). However, the relationship between CrossFit Performance and most laboratory markers varied depending on the analyzed WOD. Multiple linear regression analysis indicated that measures of lower-body muscle power (particularly jump ability) and VO2max explained together most of the variance (R2 = 81%, p < 0.001) in overall CrossFit performance. CrossFit performance is therefore associated with different power-, strength-, and aerobic-related markers.


Assuntos
Atletas , Desempenho Atlético , Consumo de Oxigênio , Corrida , Adulto , Teste de Esforço , Humanos , Masculino , Força Muscular , Oxigênio
16.
Int J Sports Physiol Perform ; 15(7): 964-970, 2020 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-32182586

RESUMO

PURPOSE: To analyze the effects of different warm-up protocols on endurance-cycling performance from an integrative perspective (by assessing perceptual, neuromuscular, physiological, and metabolic variables). METHODS: Following a randomized crossover design, 15 male cyclists (35 [9] y; peak oxygen uptake [VO2peak] 66.4 [6.8] mL·kg-1·min-1) performed a 20-minute cycling time trial (TT) preceded by no warm-up, a standard warm-up (10 min at 60% of VO2peak), or a warm-up that was intended to induce potentiation postactivation (PAP warm-up; 5 min at 60% of VO2peak followed by three 10-s all-out sprints). Study outcomes were jumping ability and heart-rate variability (both assessed at baseline and before the TT), TT performance (mean power output), and perceptual (rating of perceived exertion) and physiological (oxygen uptake, muscle oxygenation, heart-rate variability, blood lactate, and thigh skin temperature) responses during and after the TT. RESULTS: Both standard and PAP warm-up (9.7% [4.7%] and 12.9% [6.5%], respectively, P < .001), but not no warm-up (-0.9% [4.8%], P = .074), increased jumping ability and decreased heart-rate variability (-7.9% [14.2%], P = .027; -20.3% [24.7%], P = .006; and -1.7% [10.5%], P = .366). Participants started the TT (minutes 0-3) at a higher power output and oxygen uptake after PAP warm-up compared with the other 2 protocols (P < .05), but no between-conditions differences were found overall for the remainder of outcomes (P > .05). CONCLUSIONS: Compared with no warm-up, warming up enhanced jumping performance and sympathetic modulation before the TT, and the inclusion of brief sprints resulted in a higher initial power output during the TT. However, no warm-up benefits were found for overall TT performance or for perceptual or physiological responses during the TT.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...